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c© Società Italiana di Fisica

Springer-Verlag 2002

On the difference between proton and neutron spin-orbit
splittings in nuclei

V.I. Isakov1,a, K.I. Erokhina2, H. Mach3, M. Sanchez-Vega3, and B. Fogelberg3

1 Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina 188300, Russia
2 Physicotechnical Institute, Russian Academy of Sciences, St. Petersburg 194021, Russia
3 Department of Radiation Sciences, Uppsala University, Nyköping S-61162, Sweden
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Abstract. The latest experimental data on nuclei at 132Sn permit us for the first time to determine the
spin-orbit splittings of neutrons and protons in identical orbits in this neutron-rich doubly magic region and
compare the case to that of 208Pb. Using the new results, which are now consistent for the two neutron-rich
doubly magic regions, a theoretical analysis defines the isotopic dependence of the mean-field spin-orbit
potential and leads to a simple explicit expression for the difference between the spin-orbit splittings
of neutrons and protons. The isotopic dependence is explained in the framework of different theoretical
approaches.

PACS. 21.60.Cs Shell model – 21.10.Pc Single-particle levels and strength functions – 21.60.Jz Hartree-
Fock and random-phase approximations – 24.10.Jv Relativistic models

1 Introduction

Spin-orbit splitting of the mean-field orbitals is one of the
main factors, which determine the nuclear structure in
nuclei both near and far from the closed shells. While the
global characteristics of the spin-orbit splitting are well
known, one cannot say the same about the isotopical de-
pendence of the splitting. However, the new experimen-
tal results obtained recently [1–3] on nuclei close to 132Sn
allowed to define a nearly complete set of neutron and
proton single-particle orbitals and some important stati-
cal and dynamical properties of the mentioned nuclides.
In particular, from the measurements on 133Sb new in-
formation was obtained [2] on the energies and the de-
cay properties of proton single-particle states above the
Z = 50, N = 82 shells. One purpose of our study is to eval-
uate the new results on the single-particle levels at 132Sn
and intercompare them to the known data on such states
in the other doubly closed-shell (DCS) regions. However,
our main aim is to examine the magnitude of the spin-
orbit splittings of neutrons and protons in identical orbits,
and to determine their isospin dependence. A preliminary
account of this work was given in [4].

The determination of the isospin dependence has a
broader significance, since the magnitude of the spin-orbit
splittings could be one of the factors contributing to sig-
nificant structural changes in nuclides having an extreme
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neutron excess. Consequently, the trends extracted from
the empirical data presently available are crucial guide-
lines for the theoretical analysis, and it is important to
show that model calculations indeed do reproduce such
trends.

The following presentation begins with an analysis of
the existing experimental data in sect. 2, followed by the-
oretical considerations and evaluations in sect. 3. A sum-
mary and conclusions are included in the last section.

2 Experimental values

We now examine the experimental data on the spin-orbit
splitting for neutrons and protons for two groups of the
doubly closed-shell nuclei: the N = Z and the neutron-rich
regions. In order to facilitate the comparison, the available
systematics of single-particle energies at the N = Z nu-
clei of 16O, 40Ca, 100Sn, and the neutron-rich 132Sn and
208Pb are presented in tables 1 to 5, respectively. Here,
the energies of the particle and hole states closest to the
Fermi level were determined from the differences of bind-
ing energies of the core and the corresponding adjacent
odd nuclei: ε(particle) = B(core)−B(core + nucleon) and
ε(hole) = B(core − nucleon) − B(core), using the experi-
mental binding energies from [5]. The energies of orbitals
more distant from the Fermi level were subsequently de-
fined by the addition (subtraction) of the experimentally
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determined excitation energies [1,2,6–11] of the corre-
sponding orbitals in the adjacent odd nuclei. Important
for this process is that we have accounted for the frag-
mentation of states in the cases when the pertinent data
were available. The cases where the effect is essential are
indicated in tables 1–5 by an asterisk (*) next to the ex-
perimental value.

2.1 N = Z doubly closed-shell regions

The spin-orbit splittings in the N = Z nuclei can be
determined using the data in tables 1–3. Here the spin-
orbit splittings of the 1p1/2-1p3/2 and 1d3/2-1d5/2 orbits
in 16O [12,13] are practically equal for protons and neu-
trons, with the values of 6.32 and 6.17 MeV (the difference
being −2.4%) and 5.00 and 5.08 MeV (the difference being
+1.6%). Similarly, for 40Ca, ref. [14], we have the values
for protons and neutrons equal to 2.01 and 2.00 MeV for

Table 1. Single-particle levels of 16O. Set 1: V0 = −52.21 MeV,
V�s = 28.6 MeV · fm2, ap = 0.67 fm, an = 0.55 fm are fixed.
Set 3: V0 = −51.40 MeV, V�s = 25.7 MeV · fm2, ap = 0.45 fm,
an = 0.50 fm.

n�j εexp Stnd Set 1 Set 3 SIII-1 SIII-2

ν1d3/2 (0.94) 0.89 0.18 0.20 0.66 0.67
ν2s1/2 −3.27 −3.59 −3.89 −3.31 −2.88 −2.87
ν1d5/2 −4.14 −6.97 −6.85 −6.41 −6.87 −6.89
ν1p1/2 −15.67 −15.06 −16.05 −16.33 −14.58 −14.56

ν1p3/2 (−21.84) −19.98 −20.25 −20.10 −20.58 −20.59

π1d3/2 (4.40) 3.76 2.92 3.48 3.55 3.56
π2s1/2 −0.11 −0.89 −1.14 0.22 0.03 0.03
π1d5/2 4−0.60 −2.76 −2.67 −2.97 −3.57 −3.59
π1p1/2 −12.13 −9.95 −10.87 −12.60 −11.17 −11.15
π1p3/2 (−18.45) −14.66 −14.90 −16.40 −17.07 −17.08

Table 2. Single-particle states of 40Ca. Set 1: V0 =
−52.39 MeV, V�s = 27.9 MeV · fm2; ap = 0.67 fm and
an = 0.55 fm are fixed. Set 3: V0 = −52.95 MeV, V�s = 28.2
MeV · fm2, ap = 0.63 fm, an = 0.68 fm. Experimental single-
particle energy marked by an asterisk (∗) represents a mean
value weighted by the spectroscopic factors.

n�j εexp Stnd Set 1 Set 3 SIII-1 SIII-2

ν1f5/2 −3.48 −2.57 −3.91 −3.54 −1.49 −1.48
ν2p1/2 −4.42 −3.35 −4.08 −4.69 −2.20 −2.23
ν2p3/2 −6.42 −5.71 −6.08 −6.57 −4.09 −4.05
ν1f7/2 −8.36 −10.43 −10.44 −9.72 −9.92 −9.94
ν1d3/2 −15.64 −16.21 −17.40 −16.43 −15.53 −15.54
ν2s1/2 −18.11 −16.51 −17.17 −17.00 −15.94 −15.92

ν1d5/2 −21.64∗ −21.08 −21.44 −20.52 −21.90 −21.90

π1f5/2 3.86 4.92 3.79 3.41 4.90 4.91
π2p1/2 2.64 2.62 2.11 2.07 3.66 3.64
π2p3/2 0.63 0.89 0.60 0.45 2.23 2.26
π1f7/2 −1.09 −2.19 −2.18 −2.85 −3.04 −3.06
π1d3/2 −8.33 −7.11 −8.25 −9.01 −8.52 −8.53
π2s1/2 −10.85 −8.18 −8.78 −9.30 −8.77 −8.75
π1d5/2 −14.33∗ −12.05 −12.36 −13.19 −14.74 −14.75

Table 3. Single-particle states of 100Sn. Set 1: V0 =
−51.97 MeV, V�s = 33.5 MeV·fm2; ap = 0.67 fm and an =
0.55 fm are fixed. Set 3: V0 = −51.40 MeV, V�s = 35.6 MeV ·
fm2, ap = 0.52 fm, an = 0.56 fm.

n�j εsys Stnd Set 1 Set 3 SIII-1 SIII-2

ν1h11/2 −8.6(5) −8.66 −9.01 −8.72 −6.35 −6.87
ν2d3/2 −9.2(5) −8.90 −9.24 −8.70 −7.84 −7.66
ν3s1/2 −9.3(5) −9.16 −9.53 −9.13 −7.58 −7.52
ν1g7/2 −10.93(20) −11.64 −12.02 −11.23 −10.33 −9.63
ν2d5/2 −11.13(20) −11.62 −11.97 −11.59 −10.07 −10.10
ν1g9/2 −17.93(20) −17.23 −17.61 −17.21 −16.54 −17.00

ν2p1/2 −18.38(20) −19.14 −19.53 −18.93 −19.08 −18.93

π1g7/2 3.90(15) 3.88 3.54 2.70 3.38 4.04
π2d5/2 3.00(80) 2.74 2.45 2.64 3.70 3.69
π1g9/2 −2.92(20) −2.01 −2.36 −3.66 −2.74 −3.16
π2p1/2 −3.53(20) −3.48 −3.84 −3.94 −4.80 −4.65
π2p3/2 −6.38 −4.95 −5.31 −5.55 −6.22 −6.18
π1f5/2 −8.71 −5.54 −5.92 −7.60 −8.43 −7.89

the 2p1/2-2p3/2 orbit, 6.00 and 6.00 MeV for the 1d3/2-
1d5/2 orbit, and 4.95 and 4.88 MeV for the 1f5/2-1f7/2

case. In the absence of experimental data on the single-
particle states at 100Sn, we adopt here the extrapolated
single-particle energies from Grawe et al. [15], as is shown
in table 3. Based on these data, one may conclude that,
within the errors, the spin-orbit splitting of the 1g7/2-1g9/2

orbit is also equal for protons and neutrons, namely, at
6.82(28) and 7.00(28) MeV. These six cases show that the
splitting for the N = Z DCS regions is practically equal,
with small oscillations either way, but below 2.6%. This
equality simply reflects the concept of isobaric invariance
in nuclei.

2.2 Neutron-rich doubly closed-shell regions

For the neutron-rich nuclei we find the situation consid-
erably different, see tables 4-5 for the data, and table 6
regarding the splittings. In the 132Sn region, the energy of
the 3/2+ proton state in 133Sb was recently determined [2]
at 2.44 MeV. Using this value and the previously deter-
mined single-particle excitations in nuclei close to 132Sn
(see [1,6–9]) the spin-orbit splittings of the 2d levels both
in proton and neutron systems at 132Sn can be now de-
fined. The 2d3/2-2d5/2 splitting was found to be 1.48 MeV
for protons and 1.65 MeV for neutrons. This means that
the neutron spin-orbit splitting is somewhat larger (by
more than 11%) than for protons.

In the case of 208Pb, it was noted [2] that the situation
seemed to be quite opposite. Namely, a simple analysis of
the single-particle levels in 209Bi and 207Pb suggested [2]
that the spin-orbit splitting of the 2f5/2-2f7/2 orbit is
equal to 1.93 MeV for protons and 1.77 MeV for neutrons.
However, a significant correction is needed. It follows from
the experimental evidence that the neutron 2f7/2 state
in 207Pb is strongly fragmented, while the conclusions in
ref. [2] were derived by considering only the lowest, albeit
the strongest component of this state. In order to identify,
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Table 4. Single-particle states of 132Sn. Stnd: δ = 0.589 MeV. Set 1: V0 = −51.56 MeV, V�s = 33.3 MeV · fm2, β = 1.39,
δ = 0.638 MeV. Set 2: V0 = −51.44 MeV, V�s = 34.8 MeV · fm2, β = 1.39, β�s = 1.35, δ = 0.575 MeV. Set 3: V0 = −51.55 MeV,
V�s = 32.4 MeV · fm2, β = 1.31, ap = 0.63 fm, an = 0.66 fm, δ = 0.546 MeV. Set 4: V0 = −51.56 MeV, V�s = 34.1 MeV · fm2,
β = 1.34, β�s = 1.33, ap = 0.65 fm, an = 0.66 fm, δ = 0.478 MeV. Note that some theoretical works [16] postulate that the
neutron 1i13/2 state at 132Sn is only 1.9 MeV above the ν2f7/2 level. Our calculations unequivocally demonstrate, that this
state lies considerably higher, with its energy equal to +0.55, +1.59 and +1.02 MeV for the Stnd, SIII-1 and SIII-2 parameter
sets, respectively.

n�j εexp Stnd Set 1 Set 2 Set 3 Set 4 SIII-1 SIII-2

ν2f5/2 −0.58 0.36 0.73 0.46 0.22 −0.01 0.67 0.79
ν3p1/2 (−0.92) −0.13 −0.48 −0.09 −0.55 −0.61 0.16 0.20
ν1h9/2 −1.02 −1.61 −0.84 −1.38 −0.47 −0.97 −0.72 −0.02
ν3p3/2 −1.73 −0.78 −0.88 −0.77 −1.42 −1.32 −0.16 −0.14
ν2f7/2 −2.58 −2.18 −2.55 −2.21 −2.84 −2.52 −1.67 −1.71
ν2d3/2 −7.31 −7.74 −7.45 −7.62 −7.63 −7.77 −8.42 −8.26
ν1h11/2 −7.55 −7.11 −7.96 −7.23 −7.33 −6.60 −7.69 −8.23
ν3s1/2 −7.64 −7.68 −7.73 −7.64 −8.03 −7.93 −8.26 −8.21
ν2d5/2 −8.96 −9.66 −9.94 −9.66 −9.98 −9.69 −10.71 −10.71
ν1g7/2 −9.74 −10.56 −10.04 −10.39 −9.51 −9.81 −11.92 −11.32

π3s1/2 (−6.83) −6.84 −6.87 −6.80 −6.64 −6.70 −4.97 −4.90
π1h11/2 −6.84 −7.32 −6.66 −7.46 −6.77 −7.48 −5.64 −6.01
π2d3/2 −7.19 −6.86 −7.20 −6.74 −7.07 −6.72 −5.93 −5.77
π2d5/2 −8.67 −9.36 −9.20 −9.37 −9.04 −9.30 −7.88 −7.88
π1g7/2 −9.63 −9.84 −10.41 −9.66 −10.60 −9.81 −10.08 −9.56
π1g9/2 −15.71 −14.91 −14.46 −15.00 −14.57 −15.02 −15.03 −15.36
π2p1/2 −16.07 −16.01 −16.22 −15.92 −16.14 −15.91 −16.68 −16.55

Table 5. Single-particle states of 208Pb. The standard (Stdn) set of parameters corresponds to V0 = −51.50 MeV, V�s =
33.2 MeV·fm2, β = β�s = +1.39, ap = 0.67 fm, an = 0.55 fm and δ = 0.604 MeV. Set 1 corresponds to V0 = −51.39 MeV,
V�s = 33.1 MeV·fm2, β = 1.43 with β�s = −0.6, ap = 0.67 fm, an = 0.55 fm fixed; δ = 0.654 MeV. Set 2 corresponds to
V0 = −51.34 MeV, V�s = 33.1 MeV · fm2, β = 1.40, β�s = 1.26 with ap = 0.67 fm, an = 0.55 fm fixed; δ = 0.593 MeV. Set 3
corresponds to V0 = −51.99 MeV, V�s = 32.7 MeV · fm2, β = 1.36, ap = 0.73 fm, an = 0.72 fm with δ = 0.369 MeV; β�s = −0.6
is fixed. Set 4 corresponds to V0 = −51.93 MeV, V�s = 35.2 MeV · fm2, β = 1.38, β�s = 1.76, ap = 0.73 fm, an = 0.72
fm; δ = 0.366 MeV. Experimental single-particle energy marked by an asterisk (∗) represents a mean value weighted by the
spectroscopic factors.

n�j εexp Stnd Set 1 Set 2 Set 3 Set 4 SIII-1 SIII-2

ν3d3/2 −1.40 −0.32 −0.02 −0.23 −0.96 −0.99 0.38 0.42
ν2g7/2 −1.44 −0.79 −0.18 −0.65 −0.89 −1.14 0.01 0.14
ν4s1/2 −1.90 −0.80 −0.70 −0.74 −1.63 −1.51 −0.08 −0.06
ν1j15/2 −2.09∗ −2.42 −3.05 −2.31 −2.23 −1.55 −1.41 −1.93
ν3d5/2 −2.37 −1.50 −1.45 −1.40 −2.35 −2.13 −0.39 −0.38
ν1i11/2 −3.16 −4.24 −3.37 −4.05 −2.71 −3.33 −3.37 −2.77
ν2g9/2 −3.94 −3.71 −3.82 −3.59 −4.24 −3.88 −2.91 −2.97
ν3p1/2 −7.37 −7.32 −6.94 −7.17 −7.59 −7.61 −7.21 −7.13
ν2f5/2 −7.94 −8.42 −7.87 −8.25 −8.17 −8.38 −8.59 −8.44
ν3p3/2 −8.27 −8.18 −8.03 −8.04 −8.59 −8.43 −8.18 −8.15
ν1i13/2 −9.00 −9.21 −9.62 −9.08 −8.84 −8.31 −9.73 −10.21
ν2f7/2 −10.07∗ −10.57 −10.57 −10.43 −10.72 −10.46 −11.21 −11.24
ν1h9/2 −10.78 −12.06 −11.35 −11.87 −10.60 −11.09 −13.16 −12.67

π3p1/2 0.17∗ 0.63 0.43 0.72 0.29 0.47 2.79 2.88
π3p3/2 −0.68 −0.45 −0.46 −0.35 −0.58 −0.69 1.99 2.03
π2f5/2 −0.97 −0.68 −1.03 −0.60 −1.03 −0.61 0.60 0.74
π1i13/2 −2.19 −2.86 −2.37 −2.71 −1.94 −2.78 −1.20 −1.53
π2f7/2 −2.90 −3.38 −3.24 −3.26 −3.21 −3.53 −1.64 −1.66
π1h9/2 −3.80 −4.60 −5.11 −4.53 −4.71 −4.01 −4.68 −4.24
π3s1/2 −8.01 −7.76 −7.86 −7.67 −7.87 −7.87 −7.39 −7.33
π2d3/2 −8.36 −8.41 −8.66 −8.32 −8.59 −8.30 −8.64 −8.51
π1h11/2 −9.36 −9.33 −8.99 −9.18 −8.60 −9.21 −9.35 −9.65
π2d5/2 −10.04∗ −10.10 −10.05 −9.98 −9.96 −10.15 −10.29 −10.28
π1g7/2 −12.18∗ −12.07 −12.45 −11.99 −12.08 −11.58 −13.94 −13.59
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Table 6. Magnitudes in MeV of neutron and proton spin-orbit
splittings. Notation is as in previous tables. Data are given only
in the cases where spin-orbit partners of both neutrons and
protons in identical orbits have been observed experimentally.
Note that the splittings are practically identical for neutrons
and protons in the N = Z nuclei, which are not included in
this table.

Nucleus n�j ∆exp Stnd Set 1 Set 3 SIII-1 SIII-2
132Sn ν2d 1.65 1.92 2.49 2.35 2.29 2.45

π2d 1.48 2.50 2.00 1.97 1.95 2.11

208Pb ν2f 2.13 2.15 2.70 2.55 2.62 2.80
π2f 1.93 2.70 2.21 2.18 2.24 2.40

ν3p 0.90 0.86 1.09 1.00 0.97 1.02
π3p 0.85 1.08 0.89 0.87 0.80 0.85

in the spirit of refs. [17,18], the true single-particle energy
of the neutron 2f7/2 state, we use the weighted average of
the fragmented 7/2− energy levels, with the weight pro-
vided by the spectroscopic factors determined in the (d, t)
reaction on 208Pb [19]. In this way we obtain a more ac-
curate unfragmented excitation energy of this state equal
to 2.70 MeV (instead of 2.34 MeV). Using this excitation
energy, included in table 5, we find the neutron spin-orbit
splitting of the 2f orbit as 2.13 MeV, which, similarly to
the case of the 2d orbit in 132Sn, is larger by about 10%
than the splitting of 1.93 MeV for protons.

An additional piece of evidence along the same line is
given by the analysis of the 3p1/2-3p3/2 spin-orbit splitting
at 208Pb. One obtains 0.85 MeV for protons (after correct-
ing for the fragmentation of the proton 3p1/2 level) and
0.90 MeV for neutrons. Thus again the value for neutrons
is larger by about 6% than for protons. Consequently,
based on the three cases described above, it is evident
that the neutron spin-orbit splitting in the neutron-rich
DCS nuclei of 208Pb and 132Sn, is systematically larger by
∼ 10% than the corresponding proton splitting.

2.3 Fragmentation of strength at 132Sn

The fragmentation of single-particle states at 208Pb is
mainly influenced by the presence of a very low-lying
and highly collective 3−1 phonon state at 2.62 MeV. The
effects caused by the 2+

1 state are less as the collec-
tivization of quadrupole phonon, and the correspond-
ing nucleon-phonon vertices are small in heavy nuclei
near doubly closed shells. For example, in the neutron
“hole” 207Pb nuclei, the main part of energy shift of
the 7/2− level is caused by mixing with the higher-lying
(3−1 ⊗ ν1i13/2

−1)7/2− state. Numerical evaluation per-
formed by using the quasiparticle-phonon model with the
coupling constant extracted from the B(E3; 3−1 → ground
state) value shows that the 7/2− level corresponding to
the “pure” ν2f7/2

−1 state moves down by the amount of
∼ 0.4 MeV, thus approaching the experimental value of
2.34 MeV. This large shift is due to rather strong coupling

constant and non-spin-flip nature of the matrix element.
The magnitude of the predicted shift is very close to the
experimental value of 2.70 − 2.34 = 0.36 MeV mentioned
above. At the same time, the (3−1 ⊗ ν1i13/2

−1) configu-
ration has no 5/2− component and thus one does not
observe experimentally the fragmentation of the lower-
lying 5/2− level at 0.57 MeV. We note here that the 7/2−
and the 5/2− states in the proton “particle” 209Bi nu-
cleus have the opposite ordering, 7/2− being the lower
one. Due to mixing with the (3−1 ⊗ π1i13/2) configuration
the “pure” π2f7/2 level is also pushed down, but only by
about 0.2 MeV due to larger energy difference. Thus, after
taking account of configuration mixing, not only the neu-
tron ∆

(n)
�s (2f) splitting between the pure states increased

as compared to 1.77 MeV, but also the proton ∆
(p)
�s (2f)

splitting decreased to a smaller value.
Turning to the region of 132Sn, we note that the cor-

responding experimental data on fragmentation of single-
particle states are not known at present. However, as was
pointed out by Blomqvist [20], the 132Sn and 208Pb nuclei
are in some respect twins, having similar shell structures
with the correspondence of l → l+1, j → j+1 for most of
the orbitals in these regions. Therefore, all the arguments
presented above for splitting of the 2f levels at 208Pb are
completely valid also for the 2d states at 132Sn, with re-
placement of 1i13/2 by 1h11/2. So far there is no direct ex-
perimental data on the B(E3; 3−1 → ground state) value
in 132Sn. However, the core has much higher rigidity here
in comparison with 208Pb and the energy of the 3−1 state
is substantially higher at 4.35 MeV. Thus from accounting
for configuration mixing one expects some further increase
of the ∆

(n)
�s (2d) splitting and a decrease of ∆

(p)
�s (2d), but

these changes should be smaller than for the 2f levels at
208Pb. Estimates based on an indirect evaluation of the
B(E3) value from the magnitude of the octupole effec-
tive charge in 134Te [21] confirm the pattern of changes of
the ∆

(p,n)
�s (2d) values presented above. However, in the ab-

sence of experimental data on direct reactions we present
in tables 4 and 6 the values of energies at 132Sn that do
not include averaging over spectroscopic factors.

3 Theoretical approach

3.1 General considerations

Turning to the theoretical interpretation [4] of the exper-
imental values of the spin-orbit splitting discussed above,
we shall first recall that from the point of view of many-
body theory the average spin-orbit potential has its origin
in the pair spin-orbit interaction between nucleons (with
tensor forces providing a minor contribution as well). On
the level of qualitative arguments it was noted by Bohr
and Mottelson [22] that due to the symmetry properties
one should expect the neutron spin-orbit splitting to be
somewhat larger than that for protons in heavier nuclei,
simply due to a higher number of like particles in the
neutron case. However, at that time the absence of ex-
perimental data did not permit a meaningful comparison
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with measurements. With the presently available data we
can fill this gap, providing also some quantitative consid-
erations.

The two-body spin-orbit interaction differs from zero
only in the states with a total spin S = 1. The neutron-
neutron and proton-proton systems have the total isospin
T = 1 and thus due to the Pauli principle have odd values
of the relative orbital momentum L (in fact, L = 1). At the
same time, the neutron-proton system is composed from
the T = 0 and T = 1 states with equal weights, having
L = 0 and L = 1, correspondingly. Due to the absence of
spin-orbit interaction in states with L = 0, the pair spin-
orbit np interaction is half as strong as that in pp or nn
systems.

If U�s(n) and U�s(p) represent the magnitudes of the
mean spin-orbit field for neutrons and protons and ϑ(T =
1, S = 1, L = 1) is a quantity representing the parameter
of the pair spin-orbit interaction in a state with T = 1, S =
1, L = 1, then the above discourse leads to

U�s(n) ∼ ϑ(1, 1, 1) ·
(

N +
1
2
Z

)
≡ ϑ ·

(
A − Z

2

)

and

U�s(p) ∼ ϑ(1, 1, 1) ·
(

N

2
+ Z

)
≡ ϑ ·

(
A − N

2

)
. (1)

As the spin-orbit splitting ∆
(n,p)
�s ∼ U�s(n, p), the rel-

ative difference “ε” of the neutron and proton spin-orbit
splittings is given by the expression

ε =
∆

(n)
�s − ∆

(p)
�s

(∆(n)
�s + ∆

(p)
�s )/2

=
2
3

N − Z

A
. (2)

On the other hand, we can express the strength of the
spin-orbit mean field in the form

U�s(τ3) = V�s

(
1 +

1
2

β�s
N − Z

A
· τ3

)
. (3)

Here τ3 = −1 for neutrons, τ3 = +1 for protons and β�s is
the parameter that defines the isospin dependence of the
mean spin-orbit field. Then we easily obtain, this time in
terms of eq. (3), an expression for the relative difference
between the spin-orbit splittings of neutrons and protons
in identical orbits, ε:

ε = −β�s
N − Z

A
. (4)

It follows from a comparison of eqs. (2) and (4) that β�s =
−2/3.

Strictly speaking, this derivation was performed for the
two-body spin-orbit interaction. However, as mentioned
above, tensor forces provide also some contribution to the
spin-orbit splitting. This non-central interaction is propor-
tional to S12 with

S12 = 3(σ1n)(σ2n)−σ1σ2 =
√

24π·[[σ1⊗σ2]2⊗Y2]00. (5)

One can easily see from (5) that the diagonal ma-
trix elements of this interaction are different from zero
only for states with S = 1 and L ≥ 1, of which the
S = T = L = 1 one is of the main importance. It is
just the state which was already considered in this sub-
section in the case of spin-orbit interaction. Consequently,
the diagonal part of tensor forces also provides contri-
bution of the type given by eq. (3) with β�s = −2/3,
and thus it leads only to a renormalization of the V�s

value. However, as the spatial part of tensor operator
is proportional to Y2(n) and due to the spin structure
of S12, this renormalization equals zero in cases of spin-
saturated spherical nuclei. Thus in 16O and 40Ca tensor
forces give a contribution to the isoscalar part of the spin-
orbit splitting, that is mediated by their non-diagonal part
and caused by admixtures, that are out of the Hartree-
Fock–type ground state. As was shown in ref. [23], tensor
forces may really lead to a substantial contribution to the
isoscalar part of spin-orbit splitting. At the same time,
in nuclei that are not spin saturated, such as 48Ca, ten-
sor forces can contribute to the spin-orbit splitting even
in the “diagonal” scheme (i.e., a scheme without admix-
tures), if the antisymmetrization is properly included. Our
numerical calculations for seniority one states of 47Ca and
47K both having one neutron or proton hole and per-
formed in the framework of the multiparticle shell model
with tensor forces taken from our previous works [24–28],
have demonstrated that the inclusion of a tensor compo-
nent of the interaction leads to energy shifts that corre-
spond to some variation of the spin-orbit splittings ∆�s,
such that in 48Ca ∆

(n)
�s (1d) − ∆

(p)
�s (1d) = 0.34 MeV and

∆
(n)
�s (1p) − ∆

(p)
�s (1p) = 0.24 MeV. These shifts arise from

neutrons filling the ν1f7/2 subshell and are mainly due
to charge exchange two-body matrix elements of the np-
interaction mediated by the isovector part of the tensor
force (∼ τ1τ2). Thus the inclusion of tensor forces does not
change the pattern of spin-orbit splitting, which also leads
to negative values of β�s ranging from about −0.4 to −0.7.
These results qualitatively agree with those presented in
ref. [29], where in the framework of the Brueckner-Hartree-
Fock method with Reid potential (containing both the
spin-orbit and tensor components), a substantially larger
neutron than proton splitting was obtained for the 1p and
1d orbitals in 48Ca with β�s in the range from about −0.5
to −1.8. We note that the data on spin-orbit splittings of
the 2d states in 132Sn as well as on the splittings of the
2f and 3p levels in 208Pb lead to effective values of β�s

equal to −0.55, −0.60 and −0.27, respectively, which are
numbers in very satisfactory general agreement with the
prediction of eq. (4).

It is thus of substantial interest to evaluate to what
extent the isotopic dependence of the spin-orbit splittings
are reproduced by standard model calculations. Three dif-
ferent approaches were made as described below.

3.2 Evaluation I: Walecka model

The first evaluation is made in the Hartree approxima-
tion starting from the Dirac phenomenology with meson-
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nucleon interactions according to the Walecka model
[30]. One obtains (see for example [31–38] and references
therein) a Skyrme-type single-particle equation for a nu-
cleon having the effective mass m∗

N . This approach well
explains the magnitude of spin-orbit splitting in nuclei.
Here, and mainly for heavier nuclei, we concentrate only
on the difference between the proton and neutron split-
tings of spin-orbit partners in the same nuclei and result-
ing from a spin-orbit potential having the form (see for
example [34–37]):

Û�s =
λ2

N

2
1
r

{ (
mN

m∗
N

)2 d
dr

[(V 0
ω − S0

σ,σ0
)

−(V 1
ρ −S1

δ,σ,σ0
)·τ3]−2k

(
mN

m∗
N

)
d
dr

V 1
ρ ·τ3

}
�̂·ŝ , (6)

where V = V 0−τ3 ·V 1 and S = S0−τ3 ·S1 are the vector
and scalar fields related to corresponding mesons, m∗

N =
mN + 1

2 (S − V ), while k is the ratio of tensor to vector
coupling constants of ρ-meson. Various approaches have
been used to determine the coupling constants. In [37]
the meson-nucleon coupling constants, defining the V and
S fields, were taken from the Bonn NN boson exchange
potential [39], where σ and σ0 are scalar mesons imitating
the 2π exchange in the NN systems with T = 1 and
T = 0, correspondingly. In other works (see for example
[34–36]) the constants were defined from the description
of global nuclear properties, with inclusion of the σ3 and
σ4 terms in the Lagrangian density (one σ-meson with the
same characteristics for T = 1 and T = 0 channels was
used, which leads to zero contribution of this meson to
S1 in formula (6); note also that the tensor term was not
included in the ρ-meson vertex in refs. [34–36]).

Taking into account that the radial dependence of the
(mN/m∗

N ) is much weaker than that of V and S, which
are considered to be proportional to the density in the
form of Fermi function, one can approximately present
formula (6) as follows:

1
r

df

dr
· V�s

(
1 +

1
2

β�s
N − Z

A
· τ3

)
�̂ · ŝ ;

f =
[
1 + exp

(
r − R

a

)]−1

. (7)

Calculating the V and S magnitudes in the center of
nuclei at the values of vector and scalar densities ρv =
0.17, ρs = 0.16, ρ−v = 0.17 (N − Z)/A, ρ−s = 0.16 (N −
Z)/A (all in fm−3) , using the coupling parameters from
[37,39] and taking into account the isotopic dependence
of mN/m∗

N , we obtain V�s ≈ 34 MeV· fm2 and β�s ≈
−0.40. If we use the NL2 set of parameters from [35,36]
then we have V�s ≈ 31 MeV · fm2, β�s ≈ −0.43. At the
same time the set NL1 from [34,36], giving small values of
effective masses, leads to V�s ∼ 50 MeV · fm2 and β�s ∼
−1.3. As the V 1, S1 magnitudes are proportional to ρ−v
and ρ−s , both the formulae (6) and (7) give equal spin-
orbit splitting for protons and neutrons in the N = Z
nuclei. It should be noted, that the value of β�s is always

negative and is determined mainly, or entirely, by the ρ-
meson conribution.

The magnitudes of the empirical effective values of β�s

at 132Sn and 208Pb, listed in subsect. 3.1, are quite well
reproduced by the model calculations in this subsection, in
particular by those using the first two sets of parameters.

It is worth mentioning that a study of the neutron
spin-orbit splitting in light nuclei as a function of A at
given Z was recently performed in the framework of the
Walecka model by Lalazissis et al. [40]. However, the in-
tercomparison between the splittings of both proton and
neutron “similar” spin-orbit doublets in the same nuclei
was not performed there.

3.3 Evaluation II: Woods-Saxon model

In the second approach, using a Woods-Saxon (W-S)
model, we let the single-particle levels be generated by
the potential

Û(r, σ̂, τ3) = U0(τ3)f(r)

+
U�s(τ3)

r

df

dr
�̂ · ŝ +

(1 + τ3)
2

UCoul , (8)

where U0(τ3) = V0(1 + 1
2β N−Z

A · τ3); U�s and f(r, a,R)
are defined by eqs. (3) and (7), R = r0A

1/3, while
UCoul(r,Rc, Z) represents the potential of a uniformly
charged sphere with the charge Z and radius Rc = rcA

1/3.
In previous works [24–28], calculations were made us-

ing the V0 =−51.5 MeV, r0 =1.27 fm, V�s =33.2MeV·fm2,
a(p) = 0.67 fm, a(n) = 0.55 fm and β�s = β = 1.39, which
on the average described the spectra of single-particle
states in nuclei from 16O to 208Pb. This set of parame-
ters is denoted here as the “Stnd” (standard) one. With
the appearance of new experimental data on the single-
particle levels, we performed a new determination of pa-
rameter values through the Nelder-Mead method [41] by
minimizing the root-mean square deviation

δ =

√√√√ 1
n

n∑
k=1

(εtheor
k − εexp

k )2 . (9)

The computation demonstrated a very small sensitiv-
ity of results to the value of rc, which was adopted to
be the same as before: rc = 1.25 fm. The minimization
of δ performed for all nuclei presented in tables 1–5 with
rc = 1.25 fm and different values of r0, showed that the
minimum in all cases corresponds to r0 ≈ 1.27 fm, that
also coincides with the value adopted by us before. The
values rc = 1.25 fm and r0 = 1.27 fm were thus fixed in
further calculations.

As was noted above, the optimal relation of proton to
neutron spin-orbit splitting corresponds to β�s ∼ −0.6.
The fourth column, “Set 1”, of tables 4 and 5 presents
the values of theoretical energy levels obtained in the op-
timization with fixed values of β�s = −0.6, ap = 0.67 fm
and an = 0.55 fm.
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The fifth column, “Set 2”, of tables 4 and 5 presents
the results of optimization with only two fixed parameters:
ap = 0.67 fm and an = 0.55 fm.

The values of “Set 3” corresponds to an optimization
at fixed β�s = −0.6, while “Set 4” are the results with no
parameters fixed.

We see that the optimized values of V0, V�s and β (see
formula (8)) are very close to the “Stnd” ones, with small
variations from nucleus to nucleus. The magnitudes of the
diffusinesses “a” vary more strongly, differing by about
10% to 15% from their “Stnd” values. A comparison of
the “Stnd” with “Set 1” and of “Set 3” with “Set 4” re-
sults shows that the contribution of β�s to the root-mean
square deviation δ is small. It is thus more reasonable to
define β�s not from a minimization of δ, but rather by
using the experimental and theoretical arguments men-
tioned above. This conclusion is confirmed by the results
of Koura and Yamada [42], who made a number of dif-
ferent fits of W-S parameters to the same set of exper-
imental data, obtaining diverse (in magnitude and sign)
values of the parameter that defines the contribution to
the spin-orbit term, which is linear in (N−Z)/A. A global
adjustment of W-S parameters simply appears to be only
weakly sensitive to details of the spin-orbit splitting.

As mentioned previously, the energies of levels in nuclei
with N = Z (see tables 1–3) are independent of β and
β�s. Here the optimization was performed twice, first with
fixed values of an = 0.55 fm and ap = 0.67 fm with a
subsequent definition of V and V�s (“Set 1”) and secondly
without fixing any parameters (“Set 3”).

The results of the calculations presented in tables 1
to 5 include some levels having positive energies, i.e. un-
bound but sub-barrier states. In such cases we present
here the real part of the single-particle energies only for
those states having very small decay widths.

To summarize evaluation II, we have determined the
parameters of the W-S potential using a global mean
square-root optimization, except for the isospin-dependent
spin-orbit term, where the parameter value was found
to be insensitive to the adjustment. Hence the value of
β�s ∼ −0.6 was deduced from physical considerations
based on experimental spin-orbit splittings.

3.4 Evaluation III: Hartree-Fock with a Skyrme
interaction

For the third-model approach, which complements the
first two evaluations using the empirically adjusted
W-S potential (8) and the microscopical procedure, we
have selected the Hartree-Fock calculations with the SIII
interaction. The results of these self-consistent calcula-
tions, listed in the last two columns of tables 1 to 5,
were obtained by considering the contribution of a single-
particle part of the center-of-mass energy and taking into
account the Coulomb exchange term in the Slater ap-
proximation. The SIII-1 results correspond to calculations
which take into account all terms of the energy functional
contributing to spin-orbit splitting, while the SIII-2 results
have been obtained by omitting the spin density terms in

the spin-orbit potential. In the last case our results are
close to those from the study by Leander et al. [43] per-
formed for 208Pb, 132Sn and 100Sn nuclei. We see that
the results obtained in the framework of the Hartree-
Fock method also demonstrate that the calculated neu-
tron spin-orbit splittings of the 2d orbit in 132Sn as well
as of the 2f and 3p orbits in 208Pb are larger than for pro-
tons and they correspond to effective β�s in the interval of
−0.9 to −0.6. We note that the difference between the neu-
tron and proton spin-orbit splittings is reproduced here
by using a simple parameterization of Skyrme forces. Our
calculated results differ from those of Noble [32] who pro-
posed that the isotopic dependence of the spin-orbit po-
tential in the Hartree scheme is cancelled through the con-
tribution of exchange terms, but agree with that of [29].
We mention here that the SIII parameterization contains
density-dependent terms that imitate in some sense the
three-body interaction.

Tables 1 and 2 give results for 16O and 40Ca, which
are spin-saturated nuclei. In these cases the spin density
terms, included in SIII-1 but not in SIII-2, do not con-
tribute significantly to the spin-orbit splitting (the contri-
butions in these cases are only due to small differences in
the radial wave functions of spin-orbit partners). Conse-
quently, as can be expected, the SIII-1 and SIII-2 calcu-
lations give very similar results in both cases.

4 Discussion and conclusions

Using theoretical analysis and systematics of available
experimental data we have derived formula (3) that
describes the difference between the neutron and pro-
ton spin-orbit splittings, i.e. the isotopic dependence of
the mean-field spin-orbit splitting. The splitting becomes
larger for neutrons than for protons in nuclei having
N > Z. The general arguments presented initially (based
on the properties of the two-body spin-orbit and tensor
interactions) gave a result in fair agreement with the em-
pirical observations. A further microscopic study within
the Walecka model supports this initial result, while it was
found that a global fit of Woods-Saxon model parameters
appears to be rather insensitive to the isotopic dependence
of the spin-orbit splitting. A self-consistent calculation us-
ing the SIII interaction gave results in general agreement
with the experiment and prediction by eq. (3) with nega-
tive values of β�s ∼ −0.6.

In this context, one should point out that within the
Walecka model, the sign of the isospin term in the spin-
orbit potential is in agreement with the sign of an analo-
gous term present in the expression for the central nuclear
potential. While the spin-orbit term in this model is de-
fined, very approximately, by the (V − S) combination of
the entering fields, the central nuclear potential is propor-
tional to the (V + S) combination. The main, isoscalar,
part of the (V − S) term is positive and the addition of
an isovector contribution, arising from V 1, leads for the
N > Z nuclei, as was shown above by us, to an additional
term (positive for neutrons and negative for protons), its
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magnitude growing with (N − Z), together with the ra-
tio of neutron to proton splittings. At the same time, the
isoscalar part of the central (V +S) term is negative. The
addition of a V 1 term leads here for neutrons in (N > Z)
nuclei to reduction of the absolute value of (V + S). So,
with increasing N at a given Z, the depth of the central
nuclear potential for neutrons decreases and they become
less bound, while the protons become more bound. All
this is reflected in the W-S model (see eq. (8) above) by
the fact that β�s is negative, while β is positive. The two
models are thus fully consistent in this respect.

The isotopic dependence of the spin-orbit splitting has
also been studied with methods somewhat different than
those used here. In the work of Mairle [44] the average
spin-orbit potential was obtained as a convolution with
proton and neutron densities taken in the ratio defined by
the short-range two-body spin-orbit interaction. However,
the isotopic dependence of the average spin-orbit poten-
tial was not derived here in an explicit form. This point
has some importance, since our analysis, based on the ex-
isting empirical data and different theoretical approaches,
resulting in a simple expression, immediately shows that
the difference between the neutron and proton splittings
becomes saturated at large N , which precludes very large
differences. The rather modest difference with a magni-
tude of about 10% seen in the 132Sn region is already
about 25% of the saturation value, suggesting that the
isospin dependence in itself is unlikely to lead to dramatic
structural changes. However, in cases of extreme neutron
excess, when the difference between neutron and proton
spin-orbit splittings approaches the maximum value of
about 40% (corresponding to several hundreds of keV)
a rather significant effect on the ordering of levels can be
expected.
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